Home
Class 12
MATHS
cos^(-1)(cos^(-1)-680)=?...

cos^(-1)(cos^(-1)-680)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate each of the following: sin^(-1)(sin(-600o)) (ii) \ cos^(-1)(cos(-680o))

Evaluate each of the following: (i) sin^(-1)(sin(-600^o)) (ii) \ cos^(-1)(cos(-680^o))

Evaluate each of the following: sin^(-1)(sin(pi)/(3)) (ii) cos^(-1)(cos(2 pi)/(3))tan^(-1)(tan(pi)/(4))(iv)sin^(-1)(sin(2 pi)/(3))cos^(-1)(cos(7 pi)/(7))(vi)tan^(-1)(tan(3 pi)/(4))sin^(-1)(cos(-600^(@))cos^(-1)(cos(-680^(@)))

If sin^(-1)(cos^(-1)x)lt1 and cos^(-1)(cos^(-1)x)lt1 then x in

If Sin^(-1)(cos^(-1)x) lt 1 and cos^(-1)(cos^(-1)x) lt 1" then "x in

Simplify the following: Evaluate cos^(-1)[cos(-680)]

Find the principal value of [cos^(-1)cos(-680^(@))]

The principal value of the expression cos^(-1)[cos (-680^@)] is :

Find the principal value of [cos^(-1) cos ( - 680^@)]