Home
Class 12
MATHS
tan^(-1)x+cot^(-1)y=tan^(-1)(xy+1)/(y-x)...

tan^(-1)x+cot^(-1)y=tan^(-1)(xy+1)/(y-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y are real numbers such that xy<1 then tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

The result tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) is true when value of xy is _____

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))