Home
Class 12
MATHS
" (i) "x'''y''=(x-y)^(m prime n)...

" (i) "x'''y''=(x-y)^(m prime n)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a function is represented parametrically be the equations x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t , then which of the following statements are true? (a) y^('')(x-2x y^(prime))=y (b) y y^(prime)=2x(y^(prime))^2+1 (c) x y^(prime)=2y(y^(prime))^2+2 (d) y^('')(y-4x y^(prime))=(y^(prime))^2

If a function is represented parametrically be the equations x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t , then which of the following statements are true? (a) y^('')(x-2x y^(prime))=y (b) y y^(prime)=2x(y^(prime))^2+1 (c) x y^(prime)=2y(y^(prime))^2+2 (d) y^('')(y-4x y^(prime))=(y^(prime))^2

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

If a function is represented parametrically be the equations x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t , then which of the following statements are true? y^(x-2x y^(prime))=y y y^(prime)=2x(y^(prime))^2+1 x y^(prime)=2y(y^(prime))^2+2 y^(y-4x y^(prime))=(y^(prime))^2

If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

x^(m)*y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .