Home
Class 12
MATHS
If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(wher...

If `f(n)=(int_0^n[x]dx)/(int_0^n{x}dx)`(where,[*] and {*} denotes greatest integer and tractional part of x and `n in N).` Then, the value of `f(4)` is...

A

`x epsilon[0,1)`

B

`{x}=2`

C

`{x}=1//3`

D

`xgt0`

Text Solution

Verified by Experts

`int_(0)^(x)[x]dx=int_(0)^(1)0dx+int_(1)^(2)1dx+int_(2)^(3)2dx+…………….`
`+int_([x]-1)^([x])([x]-1)dx+int_([x])^(x)[x]dx`
`=0+1+2+3+……….+([x]-1)+[x](x-[x])`
`=(([x]-1)[x])/2+[x]{x}`…………..1
Now `int_(0)^([x]) dx=[(x^(2))/2]_(0)^([x])=([x]^(2))/2`..............2
Comparing 1 and 2 we get
`([x]-1)[x])/2+[x]{x}=([x]^(2))/2`
`:.[x]^(2)-[x]+2[x]{x}=[x]^(2)`
`=[x]=0` or `{x}=1//2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

The value of (int_0^n[x]dx)/(int_0^n{x}dx is (where [x] and {x} denotes the integral part and fractional part functions of x and x in N )

The expression (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) a where [x] and [x] are integrala and fractional parts of x and n in N is equal to

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).