Home
Class 12
MATHS
If f(n)=int0^x[cos t]dt, where x in (2 n...

If `f(n)=int_0^x[cos t]dt,` where `x in (2 npi,2 npi+pi/2); n in N and [*]` denotes the greatest integer function. Then, the value of `|f(1/pi)|` is ...

Answer

Step by step text solution for If f(n)=int_0^x[cos t]dt, where x in (2 npi,2 npi+pi/2); n in N and [*] denotes the greatest integer function. Then, the value of |f(1/pi)| is ... by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] denotes the greatest integer function . then the value of f(1/pi) is

int_0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] denotes the greatest integer function . then the value of f(1/pi) is

Knowledge Check

  • Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

    A
    `x epsilon R, x` not an integer
    B
    `x epsilon (-oo, -2)uu[-1,oo)`
    C
    `x epsilon R, x!=-2`
    D
    `x epsilon (-oo,-1]`
  • Similar Questions

    Explore conceptually related problems

    int_0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] denotes the greatest integer function . then the value of f(1/pi) is

    Evaluate: int_0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[dot] denotes the greatest integer function.

    Evaluate: int_0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[dot] denotes the greatest integer function.

    Evaluate: int_(0)^(x)[cos t]dt where x in(2n pi,4n+1(pi)/(2)),n in N, and.] denotes the greatest integer function.

    int_(0)^(x)[sin t]dt, where x in(2n pi,(2n+1)pi),n in N, and [.] denotes the greatest integer function is equal to -n pi(b)-(n+1)pi2n pi(d)-(2n+1)pi

    int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

    int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi