Home
Class 10
MATHS
(xi)p(y)=y^(2)+(3sqrt(5))/(2)y-5...

(xi)p(y)=y^(2)+(3sqrt(5))/(2)y-5

Promotional Banner

Similar Questions

Explore conceptually related problems

Find zeroes of the polynomial y^(2)+(3sqrt(5)y)/(2)-5

Find y ' , if (a) y=5x^(2//3)-3x^(5//2)+2x^(-3) (b) y=(a)/(3sqrt(x))^(2)-(b)/(x^(3)sqrt(x) (a,b constants )

Equation sqrt((x-5)^(2)+y^(2))+sqrt((x+5)^(2)+y^(2))=20 represents

Add the following algebraic expressions: 2,(2y)/(3)-(5y^(2))/(3)+(5y^(3))/(2),-(4)/(3)+(2y^(2))/(3)-(y)/(2),(5y^(3))/(3)+3y^(2)+3y+(6)/(5)

If P(y)=y^(2)-[3sqrt(2)]y+1 , then find p(3sqrt(2))

Given x, y in R , x^(2) + y^(2) gt 0 . Then the range of (x^(2) + y^(2))/(x^(2) + xy + 4y^(2)) is (a) ((10 - 4 sqrt(5))/(3),(10 + 4 sqrt(5))/(3)) (b) ((10 - 4 sqrt(5))/(15),(10 + 4 sqrt(5))/(15)) (c) ((5- 4 sqrt(5))/(15),(5 + 4 sqrt(5))/(15)) (d) ((20- 4 sqrt(5))/(15),(20 + 4 sqrt(5))/(15))

If x=(2)/(sqrt(3)-sqrt(5)) and y=(2)/(sqrt(3)+sqrt(5)) , then x+y = _______ .

If p(y)=y^2-3sqrt(2)y+1 , then find p(3sqrt(2)) .

Rationalise the denominator: (a) (1)/(root(3)(3) + root(3)(2)) , (b) (2)/(sqrt5 + sqrt3 + sqrt2) , (c) (x^(2))/(sqrt(x^(2) + y^(2)) - y) , (d) (1)/(sqrt6 + sqrt5 - sqrt11) (e) (sqrt(x + 2y) - sqrt(x -2y))/(sqrt(x + 2y) + sqrt(x - 2y)) , (f) (sqrt10 + sqrt5 - sqrt3)/(sqrt10 - sqrt5 + sqrt3)