Home
Class 11
MATHS
(sin(pi+x)cos(pi/2+x)tan((3pi)/2-x)cot(2...

`(sin(pi+x)cos(pi/2+x)tan((3pi)/2-x)cot(2pi-x))/(sin(2pi-x)cos(2pi+x)c o s e c(-x)sin((3pi)/2-x))=1`

Text Solution

Verified by Experts

`=(sin(pi+x)cos(pi/2+x)tan(3/2pi-x)cot(2pi-x))/(sin(2pi-x)cos(2pi+x)cosec(-x)sin(3/2pi-x))`
`=(-sinx(-sinx)cotx(-cotx))/(-sinxcosx-cosecx-cosx)`
`=(sin^2x*cos^2x)/(cos^2xsin^2x)`
`=1`.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos (pi+x).cos(-x))/(sin(pi-x).cos(pi/2+x)) = cot^2x

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi)/(2)+x)=cot^(2)x

cos((3pi)/(2) +x) cos(2pi+x)[cot(3pi)/(2)-x+cot(2pi+x)]=1