Home
Class 11
MATHS
Solve using the identity loga(b)=(logb)/...

Solve using the identity `log_a(b)=(logb)/(loga)`. Find the value of `log_(25)(50).log_(50)(25)`

Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of log_(0.6)(9/25)

If log_(10)2=0.30103, find the value of log_(10)50.

If c=log_(50)3,d=log_(50)5 the value of log_(50)15 is

If log_(a)x=y , then the value of log_a(a/x) is

The value of loga b-log|b|=

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Find 'a' if log_a 324=4