Home
Class 12
MATHS
The function f(x)=x^x decreases on the i...

The function `f(x)=x^x` decreases on the interval (a) `(0,\ e)` (b) `(0,\ 1)` (c) `(0,\ 1//e)` (d) `(1//e ,\ e)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

The function x^x decreases in the interval (0,e) (b) (0,1) (0,1/e) (d) none of these

The function x^(x) decreases in the interval a)(0, e) b)(0, 1) c) (0, (1)/(e)) d)None of these

The function x^(x) decreases in the interval (0,e)(b)(0,1)(0,(1)/(e))(d) none of these

f(x)=|x log_e x| monotonically decreases in (a) (0,1/e) (b) (1/e ,1) (c) (1,oo) (d) (1/e ,oo)

The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

f(x)=|x log_e x| monotonically decreases in (0,1/e) (b) (1/e ,1) (1,oo) (d) (1/e ,oo)

The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)