Home
Class 12
MATHS
int0^(pi)logxdx...

`int_0^(pi)logx`dx

Text Solution

Verified by Experts

Let `I = int_0^pi logx dx`
`I = int_0^pi 1*logx dx`
`=>I = [xlogx]_0^pi -int_0^pi 1/x*x dx`
`=>I = (pilogpi -0) -[x]_0^pi`
`=> I = pilogpi-pi`
`=> I = pi(logpi-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1logx dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

Choose the correct Answer of the Following Questions : int_0^e logx dx=

What is int_0^2 e^(logx) dx equal to

int_(0)^(1) x logx dx

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

int logx dx

inte^(-logx)dx=?

int e^(3logx)dx=