Home
Class 11
MATHS
" onsider the function "f(x)={[x-[x]-(1)...

" onsider the function "f(x)={[x-[x]-(1)/(2);," if ",x!in I],[0,;quad " if ",x in I]" where [.] "

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(x-[x]-(1)/(2),x !inI),(0, "x inI):} where [.] denotes the greatest integer function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !inI),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

Discuss the continuity of the function f(x) = [x] + [-x] AA x in R . (where [.] denotes the G.I.F.)

The derivative of the function f(x) =I x I^3 at x = 0 is