Home
Class 11
MATHS
If m^2 + m'^2 + 2mm' costheta = 1 and n^...

If `m^2 + m'^2 + 2mm' costheta = 1` and `n^2+n'^2+2n n'costheta=1`, `(mn + m' n' + (m n' + m' n) costheta = 0` prove that `m^2 + n^2 = cosec^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If m^2+m'^2+ 2mm' cos theta =1, n^2+n'^2+2 n n' cos theta =1 and mn+m'n’ +(mn’ +m’n) cos theta=0 , prove that m^2+ n^2= cosec^2 theta .

If m^2+m^('2)+2mn'cos theta =1 n^2+n^('2)+2"nn"' cos theta=1 and mn +m'n'+(mn'+m'n)cos theta=0 then show that m^2+n^2=m^('2) +n^('2) =cosec^2 theta .

If sin theta + cos theta = m and sec theta + "cosec" theta = n, prove that n(m^(2)-1) = 2m.

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .

IF costheta gt 0,tan theta +sin theta =m and tan theta-sin theta=n then m^2-n^2 =…….

If m= sin theta+ cos theta and n= sec theta+cosec theta , prove that n (m + 1) (m-1) = 2m .

If cos e ctheta-sintheta=m and sectheta-costheta=n , prove that (m^(2)n)^(2/3)+(m n^2)^(2/3)=1