Home
Class 12
MATHS
|[2^x-2^(-x))^2, (2^x+2^(-x))^2,1] , [(3...

` |[2^x-2^(-x))^2, (2^x+2^(-x))^2,1] , [(3^x-3^(-x))^2, (3^x+3^(-x))^2, 1], [(4^x-4^(-x))^2, (4^x+4^(-x))^2,1]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, show that the value of each of the determinants is zero: |[(2^x+2^(-x))^2, (2^x-2^(-1))^2, 1] , [(3^x+3^(-1))^2, (3^x-3^(-x))^2, 1] , [(4^x+4^(-x))^2, (4^x-4^(-x))^2, 1]|

Without expanding, show that the value of each of the following determinants is zero: |1^2 2^2 3^2 4^2\ \ \ 2^2 3^2 4^2 5^2\ \ \ 3^2 4^2 5^2 6^2\ \ \ 4^2 5^2 6^2 7^2| (ii) |a b c a+2x b+2y c+2z x y z| (iii) |(2^x+2^(-x))^2(2^x-2^(-x))^2 1(3^x+3^(-x))^2(3^x-3^(-x))^2 1(4^x+4^(-x))^2(4^x-4^(-x))^2 1|

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

Solve : 2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x)) .

Solve for x: 4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1) .

Without expanding, find the value of: (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

((4x-3) / (2x + 1))-10 ((2x + 1) / (4x-3)) = 3, x! =-1/2, 3/4

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]