Home
Class 12
MATHS
|[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))...

`|[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))^2, (5^x+5^(-x))^2] , [(2^x-2^(-x))^2, (3^x-3^(-x))^2, (5^x-5^(-x))^2]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(x+2)-2^(x+3)-2^(x+4)>5^(x+1)-5^(x+2)

If x+(1)/(x)=2 then (2x^(2)+2)/(3x^(2)+5x+3)

(2)/(3)(5x-2)-(3x-(3-x)/(2))=(1-x)/(5)

int(2x^(2)-3x-3)/((x-1)(x^(2)-2x+5))dx

Solve : (2x^2 - 3x+1) (2x^2 + 5x + 1) = 9x^2 .

Solve: (x^2-2x+5)/(3x^2-2x-5)>1/2 .

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.