Home
Class 12
MATHS
Statement I If A=[(a^2+x^2,ab-cx,ac+bx...

Statement I If `A=[(a^2+x^2,ab-cx,ac+bx),(ab+cx,b^2+x^2,bc-ax),(ac-bx,bc+ax,c^2+x^2)] and B[(x,c,-b),(-c,x,a),(b,-a,x)]`, then `|A|=|B|^2` Statement II `A^c` is cofactor of a square matrix A of order n, then `|A^c|=|A|^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).