Home
Class 11
MATHS
If tan ^ 2 alpha = 2 tan ^2 beta + 1, t...

If ` tan ^ 2 alpha = 2 tan ^2 beta + 1, then the value of cos 2 alpha + sin ^2 beta + 3`:

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

If tan^(2)alpha=2tan^(2)beta+1 , evaluate : cos 2alpha+sin^(2)beta.

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

If tan ( alpha-beta) = (sin 2 beta)/(5-cos 2 beta),"find the value of " tan alpha : tan beta.