Home
Class 9
MATHS
" 59.Simplify: "(7sqrt(3))/(sqrt(10)+sqr...

" 59.Simplify: "(7sqrt(3))/(sqrt(10)+sqrt(3))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify: (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify the following :(5sqrt(5))/(sqrt(11)+sqrt(6))-(3sqrt(3))/(sqrt(6)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

Simplify: sqrt(7)-3/5sqrt(7)+2sqrt(7)

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

(sqrt(15)+sqrt(35)+sqrt(21)+5)/(sqrt(3)+2sqrt(5)+sqrt(7))=?

Simplify (sqrt(3)+sqrt(2))/(sqrt(5)-sqrt(2))