Home
Class 10
MATHS
8times sin alpha=(a^(2)-b^(2))/(a^(2)+b^...

8times sin alpha=(a^(2)-b^(2))/(a^(2)+b^(2))*(23)/(2)cos(pi2110a)*cot alpha=(2ab)/(a^(2)-b^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=(a^(2)-b^(2))/(a^(2)+b^(2)) , then show that cot alpha=(2ab)/(a^(2)-b^(2)) .

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

If angles alpha and beta satisfy the equation a cos theta+ b sin theta= c(a,b,c are constants), prove that- (a) sin (alpha+ beta)= (2ab)/(a^(2)+b^(2)) (b) cos (alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2)) (c) cos (alpha- beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If s in alpha+s in beta=a and cos alpha+cos beta=b show that: sin(alpha+beta)=(2ab)/(a^(2)+b^(2))cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))

If acos alpha+b sin beta=c , a sin alpha+b cos beta=c then sin(alpha+beta) (2c^(2)+a^(2)+b^(2))/(ab) (2c^(2)-a^(2)-b^(2))/(ab) (2c^(2)+a^(2)-b^(2))/(2ab) (2c^(2)-a^(2)-b^(2))/(2ab)

x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(a^(2)sin^(2)alpha+b^(2)cos^(2)alpha) then x^(2)=a^(2)+b^(2)+2sqrt(p(a^(2)+b^(2))-p^(2)), where p can be is equal to

Let cos^-1(x/a)+cos^-1(y/b)=alpha thenAnswer the following questions (A) x^2/a^2+y^2/b^2+(2xy)/(ab) cos alpha = sin^2 alpha (B) x^2/a^2-y^2/b^2+(2xy)/(ab) cos alpha = sin^2 alpha (C) x^2/a^2+y^2/b^2-(2xy)/(ab) cos alpha = sin^2 alpha (D) x^2/a^2-y^2/b^2-(2xy)/(ab) cos alpha = sin^2 alpha