Home
Class 12
MATHS
If f(x)=(x^2-6x+3)/(x-1), what is f(-1) ...

If `f(x)=(x^2-6x+3)/(x-1)`, what is f(-1) ?

A

`-5`

B

`-2`

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(-1) \) for the function \( f(x) = \frac{x^2 - 6x + 3}{x - 1} \), we will substitute \( x = -1 \) into the function and simplify. ### Step-by-step Solution: 1. **Substitute \( x = -1 \) into the function:** \[ f(-1) = \frac{(-1)^2 - 6(-1) + 3}{-1 - 1} \] 2. **Calculate the numerator:** - First, calculate \( (-1)^2 \): \[ (-1)^2 = 1 \] - Next, calculate \( -6(-1) \): \[ -6(-1) = 6 \] - Now, add these results along with 3: \[ 1 + 6 + 3 = 10 \] 3. **Calculate the denominator:** \[ -1 - 1 = -2 \] 4. **Combine the results:** \[ f(-1) = \frac{10}{-2} = -5 \] ### Final Answer: Thus, \( f(-1) = -5 \).

To find \( f(-1) \) for the function \( f(x) = \frac{x^2 - 6x + 3}{x - 1} \), we will substitute \( x = -1 \) into the function and simplify. ### Step-by-step Solution: 1. **Substitute \( x = -1 \) into the function:** \[ f(-1) = \frac{(-1)^2 - 6(-1) + 3}{-1 - 1} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log(x+1), what is f^(-1) (3) ?

A function f(x) is defined as f(x) = -6x^(2) . What is f(-3) ?

If f(x)=x^(2)+6 , what is the value of f(3)?

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Function f is defined by f(x)=(3)/(2)x+c . If f(6)=1 , what is the value of f(c) ?

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))