Home
Class 12
MATHS
if f(x)=x^n then f(1) + f'(1)/(1!) + f''...

if `f(x)=x^n` then `f(1) + f'(1)/(1!) + f''(1)/(2!)+...+f^n(1)/(n!)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

If f(x) , x^n , then the value of f(1) = (f'(1))/(1!) + (f''(1))/(2!) - (f'''(1))/(3!) + ….+ (((-1)^n f^n (1))/(n!))

if f(x)=x^(n) then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)+--+((-1)^(n)f^(prime--n)xx(1))/(n!)