Home
Class 12
MATHS
If f(x)=1/pi int0^(pi/2) sin^2(ntheta)/s...

If `f(x)=1/pi int_0^(pi/2) sin^2(ntheta)/sin^2theta d(theta)` then evaluate `(f(15)+f(3))/(f(15)-f(9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

If f(x)=int_(0)^((pi)/(2))(ln(1+x sin^(2)theta))/(sin^(2)theta)d theta,x>=0 then :

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

If f(x)=2sin^(2)theta+4cos(x+theta)sin x*sin theta+cos(2x+2 theta) then value of f^(2)(x)+f^(2)((pi)/(4)-x) is

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

I f f(x)=int_((pi^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d theta, then find_the value of f^(prime)(pi/2)dot