Home
Class 12
MATHS
" 14) Prove that "tan^(-1)(x)/(y)-tan^(-...

" 14) Prove that "tan^(-1)(x)/(y)-tan^(-1)(x-y)/(x+y)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Statement -I : tan ^(-1)""((3)/(4))+tan ^(-1) ""((1)/(7))= (pi)/(4) statement -II: "for" x gt 0 , y gt 0 tan^(-1 ) ((x)/(y))+tan^(-1)""((y-x)/(y+x))=(pi)/(4)

Prove that |tan^(-1)x-tan^(-1)y|<=|x-y|AA x,y in R

Prove that tan ^(-1)""(1)/(x+y)+ tan ^(-1)""(y)/(x^(2)+xy+1)= cot ^(-1)x.

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)