Home
Class 12
MATHS
2int0^t(1-cost)/tdt...

`2int_0^t(1-cost)/t`dt

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

F(x)= int_(0)^(x)(cost)/((1+t^(2)))dt0lt=xlt=2pi . Then

If int_(pi//3)^(x)sqrt((3-sin^(2)t))dt+int_(0)^(y)cost dt =0 then (dy)/(dx) is

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

Let A=int_0^1(e^t)/(t+1)dt , then the value of (int_0^1t e^t^2)/(t^2+1)dt A^2 (b) 1/2A (c) 2A (d) 1/2A^2

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval