Home
Class 11
MATHS
[(n^(2)*2^(n+1))/(n+1)],[2^(n+1)]...

[(n^(2)*2^(n+1))/(n+1)],[2^(n+1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

1^(2)C_(1)-2^(2)C_(2)+3^(2)C_(3)-+(-1)^(n-1)n^(2)C_(n)=(1)(n^(2)*2^(n+1))/(n+1)(3)(2^(n+1))/(n-1)

If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)]], for all positive integers n.

If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)]] , for all positive integers n.

If A = [(1,1),(1,1)] , prove by induction that A^n = [(2^(n-1), 2^(n-1)), (2^(n-1), 2^(n-1))] for all natural numbers n.

(C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+(C_(3))/(5)+.......+(C_(n))/(n+2)=(1+n*2^(n+1))/((n+1)(n+2))

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

If sum_(r=0)^(2n)a_(r)(x-100)^(r)=sum_(r=0)^(2n)br(x-101)^(r) and a_(k)=(2^(k))/(kC_(n))AA k>=n then b_(-) n equals ( A )2^(n)(2^(n+1)-1)(B)2^(n)(2^(n)-1)(C)2^(n)(2^(n)+1)(D)2^(n+1)(2^(n)-1)

(lim_(n rarr oo)[(2n)/(2n^(2)-1)(cos(n+1))/(2n-1)-(n)/(1-2n)(n(-1)^(n))/(n^(2)+1)]is1(b)-1(c)0(d) none of these

[ If 2 is the sum of infinity of a G.P.,whose first clement is 1 ,then the sum of the first n terms is [ 1) (2^(n)-1)/(2^(n)), 2) (2^(n)-1)/(2^(n-1)), 3) (2^(n-1)-2)/(2), 4) (2^(n-1)-1)/(2^(n))]]

The arithmetic mean of the series 1,2,4,8,16,....2^(n) is (2^(n)-1)/(n+1) (b) (2^(n)+1)/(n) (c) (2^(n)-1)/(n) (d) (2^(n+1)-1)/(n+1)