Home
Class 11
PHYSICS
In the equation int(dt)/(sqrt(2at-t^(2))...

In the equation `int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1]`. The value of `x` is

A

1

B

`-1`

C

`0`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • GENERAL PHYSICS

    DC PANDEY|Exercise MCQ_TYPE|17 Videos
  • GENERAL PHYSICS

    DC PANDEY|Exercise MATCH THE COLUMN|6 Videos
  • FLUID MECHANICS

    DC PANDEY|Exercise Medical entranes gallery|49 Videos
  • GRAVITATION

    DC PANDEY|Exercise (C) Chapter Exercises|45 Videos

Similar Questions

Explore conceptually related problems

int (dt)/(sqrt(2at - t^(2))) = a^(2) sin ^(-1)[[1)/(a) - 1] The value of x is

" (a) "int(dt)/(sqrt(1-t^(2)))

If equation int (dt)/(sqrt(3a - 2t^(2))) = a^(x) sin ^(-1) ((r^(2))/(a^(2)) - 1) , the value of x is

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

(1)/(2)int(dt)/(t sqrt(t-1))

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

The solution for x of the equation int_(sqrt(2))^(x)(1)/(tsqrt(t^(2)-1))dt=(pi)/(2) , is

The solution for x of the equation int _(sqrt2) ^(x) (dt)/( tsqrt(t ^(2) -1))= (pi)/(12) is

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is