Home
Class 11
PHYSICS
If vec(a(1)) and vec(a(2)) are two non-...

If `vec(a_(1)) and vec(a_(2))` are two non-collinear unit vectors and if `|vec(a_(1)) + vec(a_(2))|=sqrt(3)`, then the value of `(vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2)))` is :

A

`2`

B

`3//2`

C

`1//2`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • GENERAL PHYSICS

    DC PANDEY|Exercise MCQ_TYPE|17 Videos
  • GENERAL PHYSICS

    DC PANDEY|Exercise MATCH THE COLUMN|6 Videos
  • FLUID MECHANICS

    DC PANDEY|Exercise Medical entranes gallery|49 Videos
  • GRAVITATION

    DC PANDEY|Exercise (C) Chapter Exercises|45 Videos

Similar Questions

Explore conceptually related problems

If vec A_(1) and vec A_(2) are two non-collinear unit vectors and if |vec A_(1)+vec A_(2)|=sqrt(3) then the value of (vec A_(1)-vec A_(2))*(2vec A_(1)+vec A_(2)) is

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If vec a_(1) and vec a_(2) are two non collinear unit vectors inclined at 60^(0) to each other than the value of (vec a_(1)-vec a_(2))*(2vec a_(1)+vec a_(2)) is

Consider the equations of the straight lines given by : L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk) . If vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk , vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk , then find : (i) vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1)) (iii) vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2)) (v) (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2))) (vi) the shortest distance between L_(1) and L_(2) .

The base vectors vec a_ (1), vec a_ (2), vec a_ (3) are given in terms vectors vec b_ (1), vec b_ (2), vec b_ (3) vec a_ (1) = 2vec b_ (1) + 3vec b_ (1) -vec b_ (1), vec a_ (2) = vec a_ (1) -2vec b_ (2) + 2vec b_ (3), vec a_ (3) = - 2vec b_ ( 1) + vec b_ (2) -2vec b_ (3) if vec F_ (1) = 3vec b_ (1) -vec b_ (2) + 2vec b_ (3), Express vec F in terms of vec a_ (1) , vec a_ (2), vec a_ (3)

If vec(a_(1)),vec(a_(2)),vec(a_(3)) and vec(b_(1)), vec(b_(2)),vec(b_(3)) be two sets of non - coplanar vectors, such that vec(a_(p)).vec(b_(q))={{:(0,"if",pneq),(4,"if",p=q):}" for "p=1,2,3 and q=1,2,3 , then the value of [vec(a_(1))2vec(a_(2))3vec(a_(3))][(vec(b_(1))+vec(b_(2)),vec(b_(2))+vec(b_(3)),vec(b_(3)),vec(b_(3))+vec(b_(1)))] is equal to

A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If bar(A_(1))bar(B) and bar( C ) are three non-coplanar voctors, then (vec(B).(vec(A)xx vec( C )))/((vec( C )xx vec(A)).vec(B))+(vec(B).(vec(A)xx vec( C )))/(vec( C ).(vec(A)xx vec(B))) is equal to