Home
Class 12
MATHS
lim(n to oo) ((n+1)^4-(n-1)^4)/((n+1)^4...

`lim_(n to oo) ((n+1)^4-(n-1)^4)/((n+1)^4+(n-1)^4)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to a.-(3)/(4)b.0 if n is even c.-(3)/(4) if n is odd d.none of these

lim_ (n rarr oo) (4 ^ (n) + 5 ^ (n)) ^ ((1) / (n)) is equal to