Home
Class 12
MATHS
The scalar product of the vector vec a=...

The scalar product of the vector ` vec a= hat i+ hat j+ hat k` with a unit vector along the sum of the vectors ` vec b=2 hat i+4 hat j-5 hat k\ a n d\ vec c=lambda hat i+2 hat j+3 hat k` is equal to 1. Find the value of `lambda` and hence find the unit vector along ` vec b+ vec cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The scalar product of the vector vec a=hat i+hat j+hat k with a unit vector along the sum of the vectors vec b=2hat i+4hat j-5hat k and vec c=lambdahat i+2hat j+3hat k is equal to 1. Find the value of lambda and hence find the unit vector along vec b+vec r

The scalar product of the vector vec(a) = hat(i) + hat(j) + hat(k) with a unit vector along the sum of vectors vec(b) = 2hat(i) + 4hat(j) - 5hat(k) and vec(c ) = lambda hat(i) + 2hat(j) + 3hat(k) is equal to one. Find the value of lambda and hence find the unit vector along vec(b) + vec(c ) .

The scalar product of the vector hat i+\ hat j+\ hat k\ with the unit vector along the sum of vectors 2 hat i+\ 4 hat j-5 hat k . and lambda hat i+\ 2 hat j+\ 3 hat k\ is equal to one. Find the value of lambda .

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

Write a unit vector in the direction of the sum of the vectors vec a=2 hat i+2 hat j-5 hat k\ a n d\ vec b=2 hat i+ hat j-7 hat kdot

Find the unit vector in the direction of the sum of the vectors, vec a=2 hat i+2 hat j-5 hat k and vec b=2 hat i+ hat j+3 hat k .

Find a unit vector in the direction of the sum of the vectors: vec a= 2 hat i+ 2 hat j+ 5 hat k and vec b= 2 hat i+ hat j- 3 hat k .

Find a unit vector in the direction of the sum of the vectors: vec a= - hat i+ hat j+ hat k and vec b= 2 hat i+ hat j- 3 hat k .

Find a unit vector in the direction of the sum of vectors vec a = 2 hat i + 2 hat j - 5 hat k and vec b = 2 hat i + hat j + 3 hat k .