Home
Class 10
MATHS
2sqrt(3)x^(2)+2x-8sqrt(3)=0...

2sqrt(3)x^(2)+2x-8sqrt(3)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

Find the roots of the following equations. sqrt(3)x^(2)+10x-8sqrt(3)=0

Solve : sqrt(3)x^(2)+10x-8sqrt(3)=0.

2sqrt(3)x^(2)+x-5sqrt(3)=0

sqrt(3)x^2+10x+8sqrt(3)

Examples based on the middle term concepts : (i)4sqrt(3)x^(2)+5x-2sqrt(3)(ii)5sqrt(5)x^(2)+30x+8sqrt(5)

x^2+sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

Determine the nature of roots for the quadratic equation: sqrt3x^2+sqrt 2x-2sqrt3=0

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The cubic equation whose roots are tanA, tanB, tanC is (A) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0 (B) x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (C) x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (D) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The cubic equation whose roots are tanA, tanB, tanC is (A) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0 (B) x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (C) x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (D) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0