Home
Class 11
MATHS
Consider the determinant D= |(x+2,2x+3,3...

Consider the determinant `D= |(x+2,2x+3,3x+4), (x+1, x+1, x+1), (0, 1, 3x +8)|` If the determinant is expanded in the power of `x`, the coefficient of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the determinant |{:(x , 1 , 3) , ( 0 , 0 , 1) , (1 , x , 4):}|=0 , then x is equal to

If the determinant |(x, 1, 3),(0, 0,1),(1, x, 4)|=0 then what is x equal to ?

If (1)/((1 - 2x)(1 + 3x)) is to tbe expanded as a power series of x, then

If (1)/((1 - 2x)(1 + 3x)) is to tbe expanded as a power series of x, then

The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

Prove that , the value of the determinant |{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x+7,x+10,x+14):}| is independent of x and find the value of the determinant.

A factor of the determinant |{:(x,-6,-1),(2,-3x,x-3),(-3,2x,x+2):}| is …………..

The value of the determinant |(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x+15)| is A)2 B)-2 C)3 D)-1

Determine the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n .