Home
Class 12
MATHS
|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac...

`|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

The determinant "det(A)"= |[ a^(2) +x,ab,ac], [ab, b^(2) +x,bc,] [ac,bc, c^(2) +x]| is divisible by a. x b. x^2 c. x^3 d. none of these

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=