Home
Class 11
MATHS
" Calculate "(dy)/(dx)" ,when "x=cos^(2)...

" Calculate "(dy)/(dx)" ,when "x=cos^(2)(1)/(sqrt(1+t^(2)))*y=sin^(-1)(t)/(sqrt(1+t^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)1/(sqrt(1+t^2)),tR

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is

Differentiate cos^-1(1/(sqrt(1+t^2))) w.r.t sin^-1(t/(sqrt(1+t^2)))