Home
Class 12
MATHS
Let |A|=|a(ij)|(3xx3) ne0 Each element ...

Let `|A|=|a_(ij)|_(3xx3) ne0` Each element `a_(ij)` is multiplied by by `k^(i-j)` Let `|B|` the resulting determinant, where `k_1 |A|+k_2 |B| =a` then `k_1+k_2 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

Let A=[a_(ij)]_(2times3) where a_(ij=i+j . construct A.

A=[a_(ij)]_(3xx3), then |k xx A|=k^(3)|A|

Construct a 3xx3 matrix whose elements a_(ij) are given by a_(ij) = (i + j)^2

Let P = [a_(ij)] be a 3xx3 matrix and let Q = [b_(ij)] , where b_(ij) = 2^(i+j)a_(ij) for 1 le I , j le 3 . If the determinant of P is 2 . Then tehd etarminat of the matrix Q is :

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))