Home
Class 12
MATHS
If sum(r=1)^n r^4=F(x), then prove that ...

If `sum_(r=1)^n r^4=F(x),` then prove that the value of `sum_(r=1)^n r(n-r)^3` is `1/4[n^3(n+1)^2-4F(x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Let sum_(r=1)^(n)r^(4)=f(n)," then " sum_(r=1)^(n) (2r-1)^(4) is equal to

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))

The valueof sum_(r=1)^(n)r^(4)-sum_(r=1)^(n+2)(n+1-r)^(4) is equal to

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to