Home
Class 12
MATHS
If f(x) = x + tan x and f is the inverse...

If `f(x) = x + tan x` and `f` is the inverse of `g`, then `g'(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x + tan x and g(x) is the inverse of f(x), then g'(x) is equal to

If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

If f(x)=x+tanx and f is inverse of g, then g ′(x) is equal to

If f(x)=x+tan x and f(x) is inverse of g(x), then g'(x) is equal to (1)/(1+(g(x)-x)^(2)) (b) (1)/(1+(g(x)+x)^(2))(1)/(2-(g(x)-x)^(2)) (d) (1)/(2+(g(x)-x)^(2))

If f(x)=x+ tan x and f is the inverse of g then g'(x) equals (a) (1)/(1+[g(x)-x]^(2))(b)(1)/(2-[g(x)-x]^(2))(c)(1)/(2+[g(x)-x]^(2))(d) none of these

f(x)= x + tan x and f is an inverse function of g then g'(x)= ……..

f(x)= x + tan x and f is an inverse function of g then g'(x)= ……..