Home
Class 12
MATHS
Find the inverse of A =[[costheta,-sinth...

Find the inverse of `A =[[costheta,-sintheta,0],[sintheta,costheta,0],[0,0,1]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

Find the inverse of the matrix : A = [(costheta,sintheta),(-sintheta,costheta)]

Find the inverse of the matrix [(costheta ,sintheta) ,( -sintheta ,costheta )] .

If A=[(costheta,sintheta),(-sintheta,costheta)] Find A^2

Write the inverse of the matrix: {:[(costheta, -sintheta),(sintheta,costheta)]

If A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]] and I=[[1,0],[0,1]], then the value of (2I)/(costheta+1) is equal to

Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,costheta,0),(0,0,1):}]

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Evaluate |(2costheta,-2sintheta),(sintheta,costheta)|