Home
Class 12
MATHS
If f(x)=x^3+bx^2+cx+d and 0 < b^2 < c, ...

If `f(x)=x^3+bx^2+cx+d and 0 < b^2 < c`, then in `(-oo,oo)`, (a) `f(x)` is a strictly increasing function (b) `f(x)` has local maxima (d) `f(x)` is a strictly decreasing function (d) `f(x)` is bounded

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+bx^3+cx+d and 0 lt b^2 lt c "then in" (-oo,oo)

If f(x)=x^(3)+bx^(2)+cx+d and f(0),f(-1) are odd integers,prove that f(x)=0 cannot have all integral roots.

If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc, then in (-oo,oo)

If (x)=x^(3)+bx^(2)+cx+d and 0

Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c . Then f(x)-

If F(x)=x^(3)+bx^(2)+cx+dand0ltb^(2)ltc , then in (-oo,oo)

Let f(x) = ax^3 + bx^2 + cx + d sin x . Find the condition that f(x) is always one-one function.

Let f(x) = ax^3 + bx^2 + cx + d sin x . Find the condition that f(x) is always one-one function.