Home
Class 11
MATHS
If A+B+C=pi then sin(A+B)+cos(A+C)=...

If `A+B+C=pi` then `sin(A+B)+cos(A+C)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A +B + C = pi then secA (cos B cos C - sin B sin C) = .........

If A+B+C=pi , then cos B+cos C=

If A+B +C=pi, then sin (A+B)= .............. A) sin A B) sin B C) sin A+sin C D) sin C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A) 4 sin A * cos B * cos C B) 4 sin B * sin C * cos A C) 4 sin C * cos A * cos B D) 4 sin A * sin B * sin C

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A+B-C=3pi, t h e n sin A+ sin B-sin C is equal to- a.4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

if A + B + C = pi then (cos A) / (sin B sin C) + (cos B) / (sin C sin A) + (cos C) / (sin A sin B) =