Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sq...

`sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

The value of alpha so that sin^(-1)((2)/(sqrt(5))) , sin^(-1)((3)/(sqrt(10))) and sin^(-1)alpha are the angles of a Delta is

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

The value of alpha such that sin^(-1)(2/(sqrt(5))),sin^(-1)(3/(sqrt(10))),sin^(-1)alpha are the angles of a triangle is

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

If sin^(-1)[(1)/(sqrt(10))]+sin^(-1)[(2)/(sqrt(85))]+sin^(-1)[(4)/(sqrt(1105))]+....oo= ,then find the value of tan alpha