Home
Class 12
MATHS
f(x)=e^x then lim(x rarr 0) f(f(x))^(1/{...

`f(x)=e^x` then `lim_(x rarr 0) f(f(x))^(1/{f(x)}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Consider the function f(x)={(max(x,(1)/(x)))/(min(x,(1)/(x))),quad if x!=0 and 1,quad if x=0 then lim_(x rarr0){f(x)}+lim_(x rarr1){f(x)},lim_(x rarr1)[f(x)]=

If f(x) is odd linear polynomial with f(1)=1 then lim_(x rarr0)(2^(f(cos x))-2^(f(sin x)))/(x^(2)f(sin x)) is

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists