Home
Class 12
MATHS
if f(x)=e^(-1/x^2),x!=0 then f'(0) is...

if `f(x)=e^(-1/x^2),x!=0` then `f'(0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

Suppose for a differentiable function f,f(0)=0,f(1)=1 and f(0)=4=f'(1) If g(x)=f(e^(x))*e^(f(x)) then g'(0) is

If : f(x)=e^(x^2)," then: "f'(x)-2x*f(x)+(1)/(3)*f(0)-f'(0)=

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

if f(x)=3e^(x^(2)) then f'(x)-2xf(x)+(1)/(3)f(0)-f'(0)