Home
Class 14
MATHS
If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y2+...

If `y^(1/n)+y^(-1/n) = 2x` then `(x^2-1)y_2+xy_1` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(1/3) + y^(-1/3) = 2x, prove that (x^2 - 1)y_2 + xy_1 = 9y .

If y=x^(n-1)ln x then x^(2)y_(2)+(3-2n)xy_(1) is equal to -(n-1)^(2)y(b)(n-1)^(2)y-n^(2)y(d)n^(2)y

If y = sin(m sin^(-1)x) , then (1-x^(2))y_(2) - xy_(1) is equal to (Here, y_(n) denotes (d^(n)y)/(dx^(n)) )

If 2x= y^(1/5)+y^(-1/5) prove that (x^2-1)y_2+xy_1 = 25y

If y=x^(n-1)lnx then x^2y_2+(3-2n)x y_1 is equal to (a) -(n-1)^2y (b) (n-1)^2y (c) -n^2y (d) n^2y

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to