Home
Class 12
MATHS
int((x+1)^(2))/(x(x^(2)+1))dx is equal t...

`int((x+1)^(2))/(x(x^(2)+1))dx` is equal to:

A

`log_(e)x+c`

B

`log_(e)x+2tan^(-1)x+c`

C

`log_(e).(1)/(x^(2)+1)+c`

D

`log_(e){x(x^(2)+1)}+c`

Text Solution

Verified by Experts

`int((x+1)^(2))/(x(x^(2)+1))dx=int(x^(2)+1+2x)/(x(x^(2)+1))dx`
`=int(x^(2)+1)/(x(x^(2)+1))dx+2int(x)/(x(x^(2)+1))dx`
`=int(dx)/(x)+2int(d)/(x^(2)+1)=log_(e)x+2 tan^(-1)x+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

int(x^(2))/(x(x^(2)-1))dx is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

The value of int((x^(2)+1))/(x^(4)+x^(2)+1)dx is equal to

int(dx)/(x(x^(2)+1)) is equal to

int_(1)^(2)((dx)/(x(x^(4)+1))) is equal to

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int(2x-1-x^(2))/((1+x^(2))^(2))dx is equal to