Home
Class 12
MATHS
The least value of 2sin^2theta+3cos^2the...

The least value of `2sin^2theta+3cos^2theta` is 1 (b) 2 (c) 3 (d) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of 3sin^2theta+4cos^2theta is:

The least value of 3sin^2theta+4cos^2theta is

The least value of 2sin^(2)theta+3cos^(2)theta is 1(b)2(c)3(d)5

Find the least value of 2sin^(2)theta+3cos^(2)theta

The greatest value of sin^(4)theta+cos^(4)theta is (1)/(2)(b)1 (c) 2(d)3

If cos theta + cos^2 theta = 1, then value of sin^2 theta + sin^4 theta is (a) -1 (c) 0 (c) 1 (d) 2

The largest value of sin theta cos theta is ................ A) 1 B) 1/2 C) (1)/(sqrt2) D) (sqrt3)/(2)

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2