Home
Class 12
MATHS
If the function y=e^(4x)+2e^(-x) satisfi...

If the function `y=e^(4x)+2e^(-x)` satisfies the differential equation `(d^(3)y)/(dx^(3))+A(dy)/(dx)+By=0`, then `(A,B)-=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that the function y=e^(-3x) is solution of the differential equation (d^(2)y)/(dx^(2))+(dy)/(dx)-6y=0

Verify that the function y=e^(-3x) is a solution of the differential equation (d^(2)y)/(dx^(2))+(dy)/(dx)-6y=0

Verify that the function y=e^(-3x) is a solution of the differential equation (d^(2)y)/(dx^(2))+(dy)/(dx)-6y=0

Verify that the function y=e^(-3x) is a solution of the differential equation (d^2y)/(dx^2)+(dy)/(dx)-6y=0

Verify that the function y=e^(-3x) is a solution of the differential equation (d^2y)/(dx^2)+(dy)/(dx)-6y=0

Verify that the function y= e^(-3x) is a solution of the differential equation (d^(2)y)/(dx^2)+(dy)/(dx)-6y=0

Solve the differential equation: (dy)/(dx)+3y=e^(-2x)

If y=e^(4x)+2e^(-x) satisfis the differential equation y_3+Ay_1+By=0 then

Show that y=a*e^(2x)+b*e^(-x) is a solution of the differential equation (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0 .

Show that y=a*e^(2x)+b*e^(-x) is a solution of the differential equation (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0 .