Home
Class 9
MATHS
If a+b+c=6, a^2+b^2+c^2=14 & a^3+b^3+c^...

If `a+b+c=6`, `a^2+b^2+c^2=14` & ` a^3+b^3+c^3=36` , find `abc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

a+b+c=6,a^(2)+b^(2)+c^(2)=14 and a^(3)+b^(3)+c^(3)=36 then find the value of 3abc.

If a+b+c=6, a^(2)+b^(2)+c^(2)=14 and a^(3)+b^(3)+c^(3)=36 then value of abc is equal to

If a + b + c = 6, a^(2) + b^(2) + c^(2) = 30 and a^(3) + b^(3) + c^(3) = 165 , then the value of 4abc is:

If a+b+c=10,a^(2)+b^(2)+c^(2)=38 and a^(3)+b^(3)+c^(3)=160 then find the value of 3abc.

If a+b+c=9,a^(2)+b^(2)+c^(2)=27 and a^(3)+b^(3)+c^(3)=81 then find the value of 3abc.

If a:b:c=2:3:4, find a,b and c

If a:b:c=2:3:4, find a,b and c

If a: b= 3 : 5 and b: c = 6 : 2 , find a : b : c

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)