Home
Class 12
PHYSICS
A solid sphere of mass 1 kg and radius 1...

A solid sphere of mass 1 kg and radius 10 cm rolls without slipping on a horizontal surface, with a velocity of 20 cm/s. The total kinetic energy of the sphere is

A

0.014 J

B

0.028 J

C

14 J

D

28 J

Text Solution

AI Generated Solution

The correct Answer is:
To find the total kinetic energy of a solid sphere rolling without slipping, we need to consider both its translational and rotational kinetic energy. ### Step-by-Step Solution: 1. **Identify the given values:** - Mass of the sphere (m) = 1 kg - Radius of the sphere (r) = 10 cm = 0.1 m (conversion from cm to m) - Velocity of the sphere (v) = 20 cm/s = 0.2 m/s (conversion from cm/s to m/s) 2. **Formulas for kinetic energy:** - The total kinetic energy (KE_total) of the sphere is the sum of translational kinetic energy (KE_trans) and rotational kinetic energy (KE_rot). - Translational kinetic energy: \[ KE_{\text{trans}} = \frac{1}{2} m v^2 \] - Rotational kinetic energy: \[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \] - For a solid sphere, the moment of inertia (I) is given by: \[ I = \frac{2}{5} m r^2 \] - The angular velocity (\(\omega\)) can be related to linear velocity (v) using the equation: \[ v = r \omega \quad \Rightarrow \quad \omega = \frac{v}{r} \] 3. **Calculate \(\omega\):** \[ \omega = \frac{v}{r} = \frac{0.2 \, \text{m/s}}{0.1 \, \text{m}} = 2 \, \text{rad/s} \] 4. **Calculate the rotational kinetic energy:** - Substitute \(I\) and \(\omega\) into the rotational kinetic energy formula: \[ KE_{\text{rot}} = \frac{1}{2} \left(\frac{2}{5} m r^2\right) \omega^2 = \frac{1}{2} \left(\frac{2}{5} \times 1 \, \text{kg} \times (0.1 \, \text{m})^2\right) (2 \, \text{rad/s})^2 \] - Calculate: \[ KE_{\text{rot}} = \frac{1}{2} \left(\frac{2}{5} \times 1 \times 0.01\right) \times 4 = \frac{1}{2} \left(\frac{2}{5} \times 0.04\right) = \frac{1}{2} \times \frac{0.08}{5} = \frac{0.08}{10} = 0.008 \, \text{J} \] 5. **Calculate the translational kinetic energy:** \[ KE_{\text{trans}} = \frac{1}{2} m v^2 = \frac{1}{2} \times 1 \, \text{kg} \times (0.2 \, \text{m/s})^2 = \frac{1}{2} \times 1 \times 0.04 = 0.02 \, \text{J} \] 6. **Calculate the total kinetic energy:** \[ KE_{\text{total}} = KE_{\text{trans}} + KE_{\text{rot}} = 0.02 \, \text{J} + 0.008 \, \text{J} = 0.028 \, \text{J} \] ### Final Answer: The total kinetic energy of the sphere is \(0.028 \, \text{J}\). ---

To find the total kinetic energy of a solid sphere rolling without slipping, we need to consider both its translational and rotational kinetic energy. ### Step-by-Step Solution: 1. **Identify the given values:** - Mass of the sphere (m) = 1 kg - Radius of the sphere (r) = 10 cm = 0.1 m (conversion from cm to m) - Velocity of the sphere (v) = 20 cm/s = 0.2 m/s (conversion from cm/s to m/s) ...
Promotional Banner

Topper's Solved these Questions

  • ROTATIONAL MOTION

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP - 3|8 Videos
  • OSCILLATIONS

    MARVEL PUBLICATION|Exercise MCQ|368 Videos
  • SEMICONDUCTORS

    MARVEL PUBLICATION|Exercise MCQs|261 Videos