Home
Class 11
MATHS
An ellipse meets the line x/7 + y/2 = 1...

An ellipse meets the line `x/7 + y/2 = 1` on the X-axis, and the line `x/3-y/5 = 1` on the Y-axis. If its principle axes lie along the co-ordinate axes , find its eccentricity.

Text Solution

Verified by Experts

The correct Answer is:
` therefore e = sqrt(a^(2) - b^(2))/(a) = (sqrt(24))/(5) = (2sqrt(6))/(5)`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE AND CONICS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|289 Videos
  • CIRCLE AND CONICS

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQs|50 Videos
  • BERNOULLI TRIALS AND BINOMIAL DISTRIBUTION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|79 Videos
  • PROBABILITY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|239 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse with centre at the origin which meets the straight line x/7 + y/2 = 1 on the axis of x and the straight line x/3 - y/5 = 1 on the axis of y and whose axes lie along the axes of coordinates, is

The eccentricity of the ellipse which meets the straight line (x)/(7)+(y)/(2)=1 on the -axis and (x)/(3)-(y)/(5)=1 on the y -axis and whos axis lie along the axes of coordinates is

The eccentricity of the ellipse which meets the straight line (x)/(7)+(y)/(2)=1 on the -axis and (x)/(3)-(y)/(5)=1 on the y -axis and whos axis lie along the axes of coordinates is

The eccentricity of the ellipse which meets the straight line (x)/(7)+(y)/(2)=1 on the -axis and (x)/(3)-(y)/(5)=1 on the y -axis and whos axis lie along the axes of coordinates is

The eccentricity of the ellipse which meets the straight line (x)/(7)+(y)/(2)1 on the x -axis and the straight line (x)/(3)-(y)/(5)=1 on the y -axis and whose axis lie along the axis of coordinate

Find the area bounded by the line y=x , the x-axis and the ordinates x=-1 and x=2

" The line "4x+3y=-12" meets x-axis at the point "

MARVEL PUBLICATION-CIRCLE AND CONICS -MISCELLANEOUS MCQs
  1. An ellipse meets the line x/7 + y/2 = 1 on the X-axis, and the line x...

    Text Solution

    |

  2. If the equation ax^(2) + by^(2) + (a + b - 4) xy - ax - by - 20 = ...

    Text Solution

    |

  3. Circle x^(2) + y^(2) - 8x + 4y + 4 = 0 touches

    Text Solution

    |

  4. If the circles of same radius a and centres (2,3), (5,6) cut orthogona...

    Text Solution

    |

  5. If the equation a^(2) x^(2) + (a^(2) - 5a + 4) xy + (3a - 2) y^(2...

    Text Solution

    |

  6. The (x-x1)(x-x2)+(y-y1)(y-y2=0 represents a circle whose centre is

    Text Solution

    |

  7. Two circles with centres at C(1) , C(2) and having radii r(1) , r(2...

    Text Solution

    |

  8. If the two circles x^(2) + y^(2) + ax = 0 " and " x^(2) + y^(2) = c^(...

    Text Solution

    |

  9. If the line x + 2by + 7 = 0 is a diameter of the circle x^(2) ...

    Text Solution

    |

  10. If the circle x^(2) + y^(2) - kx - 12y + 4 = 0 touches the X-axis th...

    Text Solution

    |

  11. The equation of the circle which touches both axes and whose centre is...

    Text Solution

    |

  12. A circle touches the y-axis at the point (0, 4) and cuts the x-axis in...

    Text Solution

    |

  13. Centre of the circle (x - x(1)) (x-x(2)) + (y-y(1)) (y- y(2)) = 0 ...

    Text Solution

    |

  14. Delta ABC is right angled at C . If A -= (-3,4) " and " B -= (3,4) t...

    Text Solution

    |

  15. If the equation , px^(2) + (2-q) xy + 3y^(2) - 6qx + 30y +6y = 0 ...

    Text Solution

    |

  16. Circle x ^(2) + y^(2)+6y=0 touches

    Text Solution

    |

  17. Equation of the circle with centre at (1,-2) , and passing through th...

    Text Solution

    |

  18. Equation of the circle concentric with the circle x^(2) + y^(2) + ...

    Text Solution

    |

  19. Equation of the circle passing through the three points (0, 0) , (0...

    Text Solution

    |

  20. A circle is concentric with the circle x^(2) + y^(2) - 6x + 12y + ...

    Text Solution

    |

  21. Equation of the circle with centre on the X-axis , radius 4 , and pass...

    Text Solution

    |