Home
Class 11
MATHS
Centre and radius of circle 2x^(2) + 2y...

Centre and radius of circle ` 2x^(2) + 2y^(2) - 6x + 4y - 3 = 0 ` are

A

`(-(2)/(3),1), (sqrt(19))/(2)`

B

`((2)/(3),-1), (sqrt(19))/(2)`

C

`((-3)/(2),-1), (sqrt(19))/(2)`

D

`((2)/(3),1), (sqrt(11))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the center and radius of the circle given by the equation \( 2x^{2} + 2y^{2} - 6x + 4y - 3 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation in standard form The standard form of a circle's equation is: \[ x^{2} + y^{2} + 2gx + 2fy + c = 0 \] To convert the given equation into this form, we first divide the entire equation by 2: \[ x^{2} + y^{2} - 3x + 2y - \frac{3}{2} = 0 \] ### Step 2: Identify coefficients From the equation \( x^{2} + y^{2} - 3x + 2y - \frac{3}{2} = 0 \), we can identify: - \( g = -\frac{3}{2} \) - \( f = 1 \) - \( c = -\frac{3}{2} \) ### Step 3: Find the center The center of the circle can be found using the formula: \[ \text{Center} = (-g, -f) \] Substituting the values of \( g \) and \( f \): \[ \text{Center} = \left(-\left(-\frac{3}{2}\right), -1\right) = \left(\frac{3}{2}, -1\right) \] ### Step 4: Find the radius The radius can be calculated using the formula: \[ \text{Radius} = \sqrt{g^{2} + f^{2} - c} \] Substituting the values of \( g \), \( f \), and \( c \): \[ \text{Radius} = \sqrt{\left(-\frac{3}{2}\right)^{2} + (1)^{2} - \left(-\frac{3}{2}\right)} \] Calculating \( g^{2} \): \[ \left(-\frac{3}{2}\right)^{2} = \frac{9}{4} \] Calculating \( f^{2} \): \[ (1)^{2} = 1 \] Now substituting these values: \[ \text{Radius} = \sqrt{\frac{9}{4} + 1 + \frac{3}{2}} \] Converting \( 1 \) and \( \frac{3}{2} \) to have a common denominator of 4: \[ 1 = \frac{4}{4}, \quad \frac{3}{2} = \frac{6}{4} \] Now substituting: \[ \text{Radius} = \sqrt{\frac{9}{4} + \frac{4}{4} + \frac{6}{4}} = \sqrt{\frac{19}{4}} = \frac{\sqrt{19}}{2} \] ### Final Answer The center of the circle is \( \left(\frac{3}{2}, -1\right) \) and the radius is \( \frac{\sqrt{19}}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • CIRCLE AND CONICS

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQs|50 Videos
  • CIRCLE AND CONICS

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQs|50 Videos
  • BERNOULLI TRIALS AND BINOMIAL DISTRIBUTION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|79 Videos
  • PROBABILITY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|239 Videos

Similar Questions

Explore conceptually related problems

Find the centre and radius of the circle x^(2) + y^(2) - 6x + 4y - 12 =0 .

Find the co-ordinates of the centre and radius of the circle 3x^(2) + 3y^(2) + 6x + 4y - 3 = 0

Find the centre and radius of the circle 3x^(2) 3y^(2) - 6x +9y - 8 =0 .

Centre and Radius of circle 2x^2 +2y^2 +5x-6y+3= 0

Find the centre and radius of the circle x^(2) + y^(2) + 6x -10y -2 =0

Find the centre and the radius of the circles 3x^(2) + 3y^(2) - 8x - 10y + 3 = 0

The co-ordinates of the centre of the circle 2x^(2) + 2y^(2) - 6x + 8y - 4 = 0 are ........... .

Find the centre and radius of the circle 3x ^(2) + (a + 1) y ^(2) + 6x -9y + a + 4 =0

Find the centre and radius of the circles : x^2 + y^2 - 2x + 4y = 8

Find the centre and radius of the circles : 3x^2 + 3y^2 + 12x - 18y - 11=0

MARVEL PUBLICATION-CIRCLE AND CONICS -MULTIPLE CHOICE QUESTIONS
  1. Equation of circle having radius 5, and touching X-axis at (-1,0), is

    Text Solution

    |

  2. Equation of circle throught origin, having radius 5 and abscissa of ce...

    Text Solution

    |

  3. Centre and radius of circle 2x^(2) + 2y^(2) - 6x + 4y - 3 = 0 are

    Text Solution

    |

  4. Equation of circle of area 616 sq. units , concentric with circle ...

    Text Solution

    |

  5. Equation of circle of circumference 14 pi units , concentric with...

    Text Solution

    |

  6. If radius of circle 2x^(2) + 2y^(2) - 8x + 4fy + 26 = 0 is 4, the...

    Text Solution

    |

  7. Lengths of intercepts made by circle x^(2) + y^(2) + x - 4y - 12 =...

    Text Solution

    |

  8. Lengths of intercepts by circle x^(2) + y^(2) - 6x + 4y - 12 = 0 "...

    Text Solution

    |

  9. Two circles x^(2) + y^(2) - 4x + 10y + 20 = 0 and x^(2) + y^(2)...

    Text Solution

    |

  10. Two circles x^(2) + y^(2) = 25 and 2x^(2) + 2y^(2) - 2x + y = 0

    Text Solution

    |

  11. If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + ...

    Text Solution

    |

  12. If circles x^(2) + y^(2) + 2gx + 2fy + e = 0 and x^(2) + y^(2) + ...

    Text Solution

    |

  13. If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2...

    Text Solution

    |

  14. If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - ...

    Text Solution

    |

  15. If the circle x^2 + y^2 = a^2 cuts off a chord of length 2b from the l...

    Text Solution

    |

  16. What is the equation of circle which touches the lines x = 0 , y = 0 ...

    Text Solution

    |

  17. Equation of diameter of circle (x -5) (x - 7) (y -1) = 0 , paral...

    Text Solution

    |

  18. Equations of diameters of circle (x-5)(x-1) + (y - 7) (y-1) = 0 ....

    Text Solution

    |

  19. If circle x (x -1) + y (y -1) = c(x + y -1) touches X-axis , then c...

    Text Solution

    |

  20. Radii of circles x^(2) + y^(2) = 1, x^(2) + y^(2) - 2x - 6y= 6 and ...

    Text Solution

    |