Home
Class 12
MATHS
Optimum solution of the L.P.P. : Maxi...

Optimum solution of the L.P.P. :
Maximize `z= 3x+5y`
subject to `3x+2y le 18, x le 4, y le 6, x ge 0, y ge 0` is

A

`x=2, y =0, z=6`

B

`x=2, y=6, z=36`

C

`x=4, y=3, z=27`

D

`x=4, y=6, z=42`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given Linear Programming Problem (LPP) step-by-step, we will follow these steps: ### Step 1: Define the Objective Function We need to maximize the objective function: \[ z = 3x + 5y \] ### Step 2: Identify the Constraints The constraints given are: 1. \( 3x + 2y \leq 18 \) 2. \( x \leq 4 \) 3. \( y \leq 6 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 3: Convert Inequalities to Equations To graph the constraints, we convert the inequalities into equations: 1. \( 3x + 2y = 18 \) 2. \( x = 4 \) 3. \( y = 6 \) ### Step 4: Find Intercepts for the First Constraint For the equation \( 3x + 2y = 18 \): - To find the x-intercept, set \( y = 0 \): \[ 3x = 18 \implies x = 6 \] - To find the y-intercept, set \( x = 0 \): \[ 2y = 18 \implies y = 9 \] ### Step 5: Plot the Constraints On a graph: - Plot the line \( 3x + 2y = 18 \) with intercepts (6,0) and (0,9). - Draw the vertical line \( x = 4 \). - Draw the horizontal line \( y = 6 \). - Also, consider the axes where \( x \geq 0 \) and \( y \geq 0 \). ### Step 6: Identify the Feasible Region The feasible region is where all the constraints overlap. This area will be bounded by the lines we plotted and will lie in the first quadrant (since \( x \geq 0 \) and \( y \geq 0 \)). ### Step 7: Determine the Corner Points The corner points of the feasible region can be found by solving the equations of the lines: 1. Intersection of \( 3x + 2y = 18 \) and \( y = 6 \): \[ 3x + 2(6) = 18 \implies 3x + 12 = 18 \implies 3x = 6 \implies x = 2 \implies (2, 6) \] 2. Intersection of \( 3x + 2y = 18 \) and \( x = 4 \): \[ 3(4) + 2y = 18 \implies 12 + 2y = 18 \implies 2y = 6 \implies y = 3 \implies (4, 3) \] 3. The other corner points are: - \( (0, 0) \) - \( (0, 6) \) - \( (4, 0) \) ### Step 8: Evaluate the Objective Function at Each Corner Point Now we evaluate \( z = 3x + 5y \) at each corner point: 1. At \( (0, 0) \): \( z = 3(0) + 5(0) = 0 \) 2. At \( (0, 6) \): \( z = 3(0) + 5(6) = 30 \) 3. At \( (4, 0) \): \( z = 3(4) + 5(0) = 12 \) 4. At \( (2, 6) \): \( z = 3(2) + 5(6) = 6 + 30 = 36 \) 5. At \( (4, 3) \): \( z = 3(4) + 5(3) = 12 + 15 = 27 \) ### Step 9: Determine the Maximum Value The maximum value of \( z \) occurs at the point \( (2, 6) \): \[ z_{\text{max}} = 36 \] ### Conclusion The optimum solution of the LPP is: - \( x = 2 \) - \( y = 6 \) - Maximum value of \( z = 36 \) ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING PROBLEM [L.P.P] (OPTIMIZATION TECHNIQUES)

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|10 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos

Similar Questions

Explore conceptually related problems

Maximize z = 4x + 6 y ,subject to 3x + 2y le 12, x + y ge 4, x ge 0 , y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Maximize : z=3x+5y Subject to : x+4y le 24 3x+y le 21 x+y le 9 x ge 0, y ge 0

Maximize z = 10 x + 25 y , subject to x le 3, y le 3, x + y le 5, x ge 0 , y ge 0 .

Maximise Z = 5x + 3y subject to 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0 .

Minimise Z = -3x + 4y subject to x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

Maximize z= 5x+2y subject to 3x+5y le 15, 5x+2y le 10, x ge 0, y ge 0

Maximize Z = 2x + 3y subject to x + 2y le 6, x ge 4, y ge 0 is :

x + y le 10, 4x + 3y le 24, x ge , x ge 0, y ge 0

Maximize z = 4 x + 5y , subject to 2x + y ge7, 2x + 3 y le 15, x le 3, x ge 0 , y ge 0